Cover image for Bank of America
Logo

Bank of America

Empresa activa

Bank of America

Añadir una entrevista

Pregunta de entrevista

Entrevista de Analyst In Analytics

-

Bank of America

how did u handle multicolleanarity in logistic model

Respuestas de entrevistas

4 respuestas

3

Quite a simple question, u can either add or drop variables; obtain a larger dataset to estimate the regression model; transform the variables ( eg. log transformation) etc.

Anónimo en

1

Try the following: 1) Remove highly correlated predictor variables from Regression Model 2) Apply PCA (Principal Component Analysis) or LDA (Linear Discriminant Analysis) methods on data attributes 3) Choose appropriate sample size and ensure that computed VIF value is below 2

Dr.Hanumth Sastry en

0

1:pca for large number of features 2: RFE with VIF 3: if dataset has less number of features then plot a heat map,find highly correlated features and drop them

Tausif Husain en

0

1:pca for large number of features 2: RFE with VIF 3: if dataset has less number of features then plot a heat map,find highly correlated features and drop them

Tausif Husain en

Añadir respuestas o comentarios

Para publicar un comentario sobre esto, inicia sesión o regístrate.